场景1:问答问题
这个场景应该是使用 AI 产品最常见的方法。以 ChatGPT 为例,一般就是你提一个问题,ChatGPT 会给你答案,比如像这样:
在这个场景下,prompt 只要满足前面提到的基本原则,基本上就没有什么问题。但需要注意,不同的 AI 模型擅长的东西都不太一样,prompt 可能需要针对该模型进行微调。另外,目前的 AI 产品,也不是无所不能,有些问题你再怎么优化 prompt 它也没法回答你。以 ChatGPT 为例:
ChatGPT 比较擅长回答基本事实的问题,比如问
什么是牛顿第三定律?
。但不太擅长回答意见类的问题,比如问它谁是世界第一足球运动员?
,它就没法回答了。另外,ChatGPT 的数据仅有 2021 年 9 月以前的,如果你问这个时间以后的问题,比如
现在的美国总统是谁?
它的答案是「截至2021年9月,现任美国总统是乔·拜登(Joe Biden)。」
🔴 求助
这种直接提问的 prompt ,我们称之为 Zero-shot prompt。模型基于一些通用的先验知识或模型在先前的训练中学习到的模式,对新的任务或领域进行推理和预测。你会在高级篇看到相关的介绍,以及更多有意思的使用方法。
另外,正如我在前面基础用法一章中提到的那样,问答场景里还有一个很重要的玩法,就是多轮聊天,你可以针对某个问题,进行多轮的提问。
使用技巧一:To do and Not To do
注意
我介绍的技巧其实在各个场景都可以使用,我将其放在某个场景下解释,只是因为我觉得它更有可能在这个场景用到。你也会更容易记住这个用法。并不意味着这个技巧仅能在此场景使用。并且多技巧混用也是个不错的用法。
在问答场景里,为了让 AI 回答更加准确,一般会在问题里加条件。比如让 AI 推荐一部电影给你 Recommend a movie to me
。但这个 prompt 太空泛了,AI 无法直接回答,接着它会问你想要什么类型的电影,但这样你就需要跟 AI 聊很多轮,效率比较低。
所以,为了提高效率,一般会在 prompt 里看到类似这样的话(意思是不要询问我对什么感兴趣,或者问我的个人信息):
如果你在 ChatGPT 里这样提问,或者使用 ChatGPT 最新的 API ,它就不会问你问题,而是直接推荐一部电影给你,它的 Output 是这样的:
但如果你使用的是如 Davinci-003 这样的模型,它的 Output 很可能是这样的,它还会问你的兴趣爱好:
所以 OpenAI 的 API 最佳实践文档里,提到了一个这样的最佳实践:
Instead of just saying what not to do, say what to do instead. 与其告知模型不能干什么,不妨告诉模型能干什么。
我自己的实践是,虽然现在最新的模型已经理解什么是 Not Todo ,但如果你想要的是明确的答案,加入更多限定词,告知模型能干什么,回答的效率会更高,且预期会更明确。还是电影推荐这个案例,你可以加入一个限定词:
当然并不是 Not Todo 就不能用,如果:
你已经告知模型很明确的点,然后你想缩小范围,那增加一些 Not Todo 会提高不少效率。
你是在做一些探索,比如你不知道如何做精准限定,你只知道不要什么。那可以先加入 Not Todo ,让 AI 先发散给你答案,当探索完成后,再去优化 prompt。
以下是一些场景案例,我整理了两个 Less Effective(不太有效的) 和 Better(更好的) prompt,你可以自己尝试下这些案例:
场景 | Less Effective | Better | 原因 |
---|---|---|---|
推荐雅思必背英文单词 | Please suggest me some essential words for IELTS | Please suggest me 10 essential words for IELTS | 后者 prompt 会更加明确,前者会给大概 20 个单词。这个仍然有提升的空间,比如增加更多的限定词语,像字母 A 开头的词语。 |
推荐香港值得游玩的地方 | Please recommend me some places to visit in Hong Kong. Do not recommend museums. | Please recommend me some places to visit in Hong Kong including amusement parks. | 后者的推荐会更准确高效一些,但如果你想进行一些探索,那前者也能用。 |
最后更新于